Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__fst2(0, Z) -> nil
a__fst2(s1(X), cons2(Y, Z)) -> cons2(mark1(Y), fst2(X, Z))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__add2(0, X) -> mark1(X)
a__add2(s1(X), Y) -> s1(add2(X, Y))
a__len1(nil) -> 0
a__len1(cons2(X, Z)) -> s1(len1(Z))
mark1(fst2(X1, X2)) -> a__fst2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(add2(X1, X2)) -> a__add2(mark1(X1), mark1(X2))
mark1(len1(X)) -> a__len1(mark1(X))
mark1(0) -> 0
mark1(s1(X)) -> s1(X)
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__fst2(X1, X2) -> fst2(X1, X2)
a__from1(X) -> from1(X)
a__add2(X1, X2) -> add2(X1, X2)
a__len1(X) -> len1(X)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__fst2(0, Z) -> nil
a__fst2(s1(X), cons2(Y, Z)) -> cons2(mark1(Y), fst2(X, Z))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__add2(0, X) -> mark1(X)
a__add2(s1(X), Y) -> s1(add2(X, Y))
a__len1(nil) -> 0
a__len1(cons2(X, Z)) -> s1(len1(Z))
mark1(fst2(X1, X2)) -> a__fst2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(add2(X1, X2)) -> a__add2(mark1(X1), mark1(X2))
mark1(len1(X)) -> a__len1(mark1(X))
mark1(0) -> 0
mark1(s1(X)) -> s1(X)
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__fst2(X1, X2) -> fst2(X1, X2)
a__from1(X) -> from1(X)
a__add2(X1, X2) -> add2(X1, X2)
a__len1(X) -> len1(X)
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
A__FST2(s1(X), cons2(Y, Z)) -> MARK1(Y)
MARK1(fst2(X1, X2)) -> MARK1(X2)
MARK1(fst2(X1, X2)) -> MARK1(X1)
MARK1(add2(X1, X2)) -> MARK1(X2)
MARK1(len1(X)) -> MARK1(X)
A__ADD2(0, X) -> MARK1(X)
MARK1(add2(X1, X2)) -> MARK1(X1)
MARK1(len1(X)) -> A__LEN1(mark1(X))
MARK1(from1(X)) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
MARK1(fst2(X1, X2)) -> A__FST2(mark1(X1), mark1(X2))
MARK1(add2(X1, X2)) -> A__ADD2(mark1(X1), mark1(X2))
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
The TRS R consists of the following rules:
a__fst2(0, Z) -> nil
a__fst2(s1(X), cons2(Y, Z)) -> cons2(mark1(Y), fst2(X, Z))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__add2(0, X) -> mark1(X)
a__add2(s1(X), Y) -> s1(add2(X, Y))
a__len1(nil) -> 0
a__len1(cons2(X, Z)) -> s1(len1(Z))
mark1(fst2(X1, X2)) -> a__fst2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(add2(X1, X2)) -> a__add2(mark1(X1), mark1(X2))
mark1(len1(X)) -> a__len1(mark1(X))
mark1(0) -> 0
mark1(s1(X)) -> s1(X)
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__fst2(X1, X2) -> fst2(X1, X2)
a__from1(X) -> from1(X)
a__add2(X1, X2) -> add2(X1, X2)
a__len1(X) -> len1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__FST2(s1(X), cons2(Y, Z)) -> MARK1(Y)
MARK1(fst2(X1, X2)) -> MARK1(X2)
MARK1(fst2(X1, X2)) -> MARK1(X1)
MARK1(add2(X1, X2)) -> MARK1(X2)
MARK1(len1(X)) -> MARK1(X)
A__ADD2(0, X) -> MARK1(X)
MARK1(add2(X1, X2)) -> MARK1(X1)
MARK1(len1(X)) -> A__LEN1(mark1(X))
MARK1(from1(X)) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
MARK1(fst2(X1, X2)) -> A__FST2(mark1(X1), mark1(X2))
MARK1(add2(X1, X2)) -> A__ADD2(mark1(X1), mark1(X2))
MARK1(cons2(X1, X2)) -> MARK1(X1)
A__FROM1(X) -> MARK1(X)
The TRS R consists of the following rules:
a__fst2(0, Z) -> nil
a__fst2(s1(X), cons2(Y, Z)) -> cons2(mark1(Y), fst2(X, Z))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__add2(0, X) -> mark1(X)
a__add2(s1(X), Y) -> s1(add2(X, Y))
a__len1(nil) -> 0
a__len1(cons2(X, Z)) -> s1(len1(Z))
mark1(fst2(X1, X2)) -> a__fst2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(add2(X1, X2)) -> a__add2(mark1(X1), mark1(X2))
mark1(len1(X)) -> a__len1(mark1(X))
mark1(0) -> 0
mark1(s1(X)) -> s1(X)
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__fst2(X1, X2) -> fst2(X1, X2)
a__from1(X) -> from1(X)
a__add2(X1, X2) -> add2(X1, X2)
a__len1(X) -> len1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__FST2(s1(X), cons2(Y, Z)) -> MARK1(Y)
MARK1(fst2(X1, X2)) -> MARK1(X2)
MARK1(fst2(X1, X2)) -> MARK1(X1)
MARK1(add2(X1, X2)) -> MARK1(X2)
MARK1(len1(X)) -> MARK1(X)
A__ADD2(0, X) -> MARK1(X)
MARK1(add2(X1, X2)) -> MARK1(X1)
MARK1(from1(X)) -> MARK1(X)
MARK1(from1(X)) -> A__FROM1(mark1(X))
MARK1(fst2(X1, X2)) -> A__FST2(mark1(X1), mark1(X2))
MARK1(add2(X1, X2)) -> A__ADD2(mark1(X1), mark1(X2))
A__FROM1(X) -> MARK1(X)
MARK1(cons2(X1, X2)) -> MARK1(X1)
The TRS R consists of the following rules:
a__fst2(0, Z) -> nil
a__fst2(s1(X), cons2(Y, Z)) -> cons2(mark1(Y), fst2(X, Z))
a__from1(X) -> cons2(mark1(X), from1(s1(X)))
a__add2(0, X) -> mark1(X)
a__add2(s1(X), Y) -> s1(add2(X, Y))
a__len1(nil) -> 0
a__len1(cons2(X, Z)) -> s1(len1(Z))
mark1(fst2(X1, X2)) -> a__fst2(mark1(X1), mark1(X2))
mark1(from1(X)) -> a__from1(mark1(X))
mark1(add2(X1, X2)) -> a__add2(mark1(X1), mark1(X2))
mark1(len1(X)) -> a__len1(mark1(X))
mark1(0) -> 0
mark1(s1(X)) -> s1(X)
mark1(nil) -> nil
mark1(cons2(X1, X2)) -> cons2(mark1(X1), X2)
a__fst2(X1, X2) -> fst2(X1, X2)
a__from1(X) -> from1(X)
a__add2(X1, X2) -> add2(X1, X2)
a__len1(X) -> len1(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.